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Abstract

A sequential filtering algorithm is presented for attitude and attitude-rate estima-

tion from Global Positioning System (GPS) differential carrier phase measurements.

A third-order, minimal-parameter method for solving the attitude matrix kinematic

equation is used to parameterize the filter's state, which renders the resulting estima-

tor computationally efficient. Borrowing from tracking theory concepts, the angular

acceleration is modeled as an exponentially autocorrelated stochastic process, thus

avoiding the use of the uncertain spacecraft dynamic model. The new formulation

facilitates the use of aiding vector observations in a unified filtering algorithm, which

can enhance the method's robustness and accuracy. Numerical examples are used to

demonstrate the performance of the method.

I Introduction

TTITUDE determination methods using Global Positioning System (GPS) signals
have been intensively investigated in recent years. In general, these methods can

be classified into two main classes. Point estimation algorithms (also called "deterministic"
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algorithms), in which the CPS measurements at each time point are utilized to obtain an at-

titude solution independently of the solutions at other time points, were introduced, among

others, in Refs. 1, 2 and 3. Stochastic filtering algorithms, which process the measurements

sequentially and retain the information content of past measurements, can produce better

attitude solutions by more effectively filtering the noisy measurements. Such algorithms

were recently introduced in Refs. 4 and 5, both of which utilized extended Kalman filtering

to sequentially estimate the attitude from GPS carrier phase difference measurements. Both

attitude and attitude-rate were estimated, and the filters used the nonlinear Euler equa-

tions of motion for attitude propagation. While avoiding the traditional usage of the costly

and unreliable gyro package, this approach rendered the resulting filters computationally

burdensome and sensitive to inevitable modeling errors. 6 In Ref. 4 an attempt was made to

robustify the dynamics-based filter by estimating the unknown disturbance torques, modeled

as unknown constants.

Although GPS-based attitude estimation methods should enjoy, in principle, the low price

and low power consumption of state-of-the-art GPS receivers, and the general availability and

robustness of the global positioning system, these methods are very sensitive to multipath

effects and to the geometry of the antennae baseline c_mfiguration, and they inherently rely

on precise knowledge of the antennae baselines in the spacecraft body frame. On the other

hand, methods based on vector observations have reached maturity and popularity in the

last three decades. However, as is well known, they to:_ suffer from disadvantages, that can

be attributed to the particular attitude sensors on wh:ch they are based. Thus, while their

readings are relatively noiseless, Sun sensors are very sensitive to Earth radiation effects,

and are rendered completely useless during Eclipse. Star trackers can provide accuracy on

the order of a few arc-seconds, but are usually extremely expensive. Magnetometers always

provide measurements of the Earth magnetic field in spacecraft flying in low Earth orbits, but

they are sensitive to unmodeled residual magnetic fields in the spacecraft and to magnetic
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field model imperfections and variations.

The method presented herein is a sequential estimator for both the spacecraft attitude

matrix and attitude-rate, which mainly uses differential CPS carrier phase measurements,

but can also process aiding vector observations (such as low accuracy coarse Sun sensor

measurements, or magnetic field measurements). Conceptually similar to the principle of

complementary filtering, T the idea underlying this estimator is that, due to the different

nature of these signals, the combination of both in a unified data processing algorithm can

benefit from the relative advantages of both sensor systems, while alleviating the disadvan-

tages of both.

The new estimator is based on a third-order minimal-parameter method for solving the

attitude matrix evolution equation using integrated-rate parameters (IRP). s Similarly to

Refs. 5 and 4, the new estimator is a sequential filtering algorithm and not a determin-

istic (point estimation) algorithm. However, the new algorithm differs from other works

addressing the same problem in two main respects. First, the estimator's propagation model

does not utilize the nonlinear Euler equations. Instead, employing an approach borrowed

from linear tracking theory, 9 the uncertain dynamic model of the spacecraft is abandoned,

and the angular acceleration is modeled as a zero-mean stochastic process with exponential

autocorrelation. [A similar, but simpler, approach was employed in the Applied Technol-

ogy Satellite 6 (ATS-6)I°]. Combined with the extremely simple evolution equation of the

integrated-rate parameters, this results in a simple, linear propagation model. Second, in

contrast with other methods relying mainly on the attitude quaternion, the algorithm pre-

sented herein directly estimates the attitude matrix, a natural, nonsingular attitude repre-

sentation. Building upon the minimal, third-order integrated-rate parametrization, the new

estimator assigns just three state variables for the parametrization of the nine-parameter

attitude matrix, which is at the heart of its computational efficiency.

After a brief review of the IRP method for the solution of the attitude evolution equa-



tion, the angular acceleration kinematic model is presented. Applying minimum mean square

error (MMSE) estimation theory to the perturbation model, the measurement processing al-

gorithm is developed for both GPS carrier phase signals and vector observations. An attitude

matrix orthogonalization procedure, incorporated to enhance the algorithm's accuracy and

robustness, is then introduced, followed by a derivation of the prediction stage. Two numer-

ical examples are then presented, which demonstrate the performance of the new algorithm.

Concluding remarks are offered in the last section.

II Integrated-Rate Parameters

Consider the matrix differential equation

_'(t) = W(t)V(t), V(to) = Vo (1)

where V(t) • R n,', W(t)= --wT(t) for all t >_ to, Vol, oT

temporal derivative. Defining

A(t, to) =" W(T) d-r

17¢'o(t) _ W(t) - (t - to)IfV(t)

= I and the overdot indicates the

(2)

(3)

it can be shown 11 that the following matrix-valued function is a third-order approximation

of V(t):

V(t, to) _- {I + A(t, to) +
A2(t, to)

2_
+

A3(t'3' to) +---_.-t-tc [A(t, to)lYdo(t)- VVo(t)A(t, t0)] } V0

(4)
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Moreover, V is a third-order approximation of an orthogonal matrix, i.e., V(t, to)(/T(t, to) =

I + O((t -- t0) 4) where O(x) denotes a function of x that has the property that O(x)/x is

bounded as x _ 0.

In the 3-D case, the off-diagonal entries of A(t, to), termed integrated-rate parameters,

have a simple geometric interpretation: they are the angles resulting from a temporal-

integration of the three components of the angular velocity vector

_(t) _ [_l(t) _(t) _3(t)]_ (5)

where wi is the angular velocity component along the i-axis of the initial coordinate system,

and i -- 1, 2, 3 for x, y, z, respectively. The orthogonal matrix differential equation (1) is

rewritten, in this case, as

D(t) = gt(t)D(t), D(to) = Do (6)

where D(t) is the attitude matrix, or the direction cosine matrix (DCM), f2(t) = -[w(t)x],

and [w(t)x] is the usual cross product matrix corresponding to w(t). In this case, the matrix

A(t, to) takes the form

A(t, to) _- [O(t)x]

where the parameter vector tg(t) is defined as

(7)

[e(t)_ e,(t) e_(t) o_(t) (8)
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and

_,(t) -_ w,(r) dr, Z= 1,2,3 (9)

Let the sampling period be denoted by T _ tk+l - t_. Using the notation #(k) _A 8(t_),

the parameter vector at time t_ is 8(k) = [_l(k) O2(k) 8a(k)] T and Eq. (9) implies

k
O_(k) = w,(v)dv,  =1,2,3 (1o)

From Eq. (10) we have

tk+l0(k+ 1) -- (_(k) + _(T) dT
J tk

(11)

Define A(k + 1, k) to be the discrete-time analog of A(t, to), i.e.,

A(k + 1, k) _ - [(0(k + 1)- 8(k)) x] (12)

Also, let _(k + 1) -_ -[¢(k + 1)x], where

'¢,(k+ 1) _wCk + 1) - C,(_:+ 1)T (13)

Then, the corresponding discrete-time equivalent of Eq. (4) is

D(k+l)= {I+A(k+l,k)+lA2(k+l,k: + 6A3(k+l,k)

+6T[A(k+ 1, k)@(k + 1)- _(k + 1)A(k + 1, k)]}D(k) (14)



which, using Eqs. (12) and (13), can be written as

D(k + 1)= D[O(k + 1)-O(k),w(k + 1),&(k + 1), D(k)] (15)

III Kinematic Motion Model

To avoid using the uncertain spacecraft dynamic model, the spacecraft angular acceleration

is modeled as a zero-mean stochastic process with exponential autocorrelation function. The

acceleration dynamic model is, therefore, the following first-order Maxkov process,

&(t)=-A&(t)+_,(t) (16)

For simplicity, a decoupled kinematic model is chosen for the three angular rate components,

i.e., A a diag{Tl-l,T2-1, r3-1}, where a---- {ri}i=l axe the acceleration decorrelation times associ-

ated with the corresponding body axes. The driving noise is a zero-mean white process, with

power spectral density (PSD) matrix

Q(t) = 2AE 2, E _a diag{a,, a2, a3} (17)

The noise variances in Eq. (17) were chosen according to the Singer angular acceleration

probabilistic model, 9 in which the angular acceleration components, {&i 3}i=1, can be 1) equal

to &ii with probability PMi, 2) equal to --&i, with probability PMi, 3) equal to zero with

probability P0i, or 4) uniformly distributed over the interval [--&i_, _)Mi] with the remaining

probability mass. Using this model, it follows that

ay = _(1 + 4pMi -- PO_) (18)



The parameters d:M,, PM: and Pot are considered as filter tuning parameters. As customarily

done, they are selected by experience with real and simulated data, so as to optimally adapt

the filter to the characteristics of the problem at hand.

Defining now the system's state vector as

x(t) _- [sT(t) wT(t) d:T(t)] T (19)

the state equation is

gc(t) = Fx(t) + fl(t) =

with obvious definitions of F and _(t).

discrete-time state equation is

0 I 0

0 0 I

0 0 -A

(20)

Corresponding to the sampling interval T, the

x(k + 1) = _(T)x(k) q- v(k) (21)

where the transition matrix is

O(T) - err =
'I TI A-2(e -^r-I+TA)]

0 I A-l(r-e -^T)

0 0 e -AT J

and v(k) is a zero-mean, white noise sequence, with co'rariance matrix

f0 TQ(k) _- E{v(k)vT(k)} = eF(T-t)diag[O,O,O(t)}eFr(T-') dt

Explicit computation of the integrals in Eq.

(22)

(23)

(23) yields the following expressions for the
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Fig. 1: GPS Phase Difference Measurement Geometry

entries of the symmetric covariance matrix Q(k)

Qn(k) = A-4_2(I + 2AT- 2A2T 2 + 2A3T3- e -2AT- 4ATe -AT)
3

Q,2(k) = A-3_2(I- 2AT + A2T 2 - 2e -AT + e -2AT + 2ATe -^T)

Q13(k) -- A-2_2(I - e -2AT- 2ATe -AT)

Q22(k) = A-2E2(4e -^T- 3I-e -2^T + 2AT)

Q_3(k)= h-lr_2(e-_^_+ I- 2e-^_)

Q3_(k)= _(I - e-2A_)

(24a)

(24b)

(24c)

(24d)

(24e)

(24f)

IV Measurement Processing

GPS Differential Phase Measurements

Consider the basic GPS antenna array, depicted in Fig. 1. The array consists of the master

antenna, Am, and the slave antenna, Aj. These antennas are located on the satellite's surface,
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such that the baselinevector betweenthem, resolved in a body-fixed coordinate system, is

bi. It is assumed that the entire system consists of rnb antennas, in addition to the master

antenna, so that there exist mb independent baselines. It is also assumed that at time tk+l,

m, GPS satellites are in view.

Consider the ith satellite, and denote the sightline (unit) direction vector to that satel-

lite, resolved in an inertial coordinate system, by s,. Let D(k + 1) be the attitude matrix

transforming vectors in the inertial coordinate system to their body-fixed system represen-

tations at time tj,+l. Let N_j(k + 1) and A¢_j(k + 1) denote the integer and fractional parts,

respectively, of the phase difference between the two carrier signals, corresponding to the ith

satellite, as acquired by the antennas Am and Aj. Denoting by A the GPS carrier wavelength,

the true (noiseless) signals satisfy

[A¢,j(k + 1) + N,y(k + 1)],k = -bTD(k + 1)s, (25)

The standard GPS carrier wavelength is 19.03 cm. In t[is work, it is assumed that the integer

part of the phase difference between the two receivers is known from a previous solution. 1,12

In practice, the phase measurements will be contaxmnated by noise, the primary source

of which is due to the multipath effect. 1 Denoting the noise corresponding to the baseline b3

and the sightline s_ by _ij(k + 1), the real measurement equation is

[A¢,3(k + 1) + N,._(k + 1)]A = bTD(k + 1)s, + fiij(k + 1) (26)

where it is assumed that fi,j(k + 1) -,- :N'(0, r}_(k + 1)). Typically it can be assumed that the

noise standard deviation is on the order of 5 mm.1 Fro n Eq. (26) we obtain the normalized

measurement equation

A¢,_(k + 1) + N,j(k + 1) = byD(k + 1)s, + n,7(k + 1) (27)
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where we have defined bj _= T).7/A and no(k+l) _ fio(k + 1)/A. The normalized measurement

noise satisfies nu(k + 1),-- N(O,a_(k + 1)), where

o-,j(k+ 1)= _-,j(k+ 1)/:_. (28)

GPS Measurement Linearization

At tk+l the minimum mean square error (MMSE) predicted vector is i:(k +l[k), and its

corresponding prediction error covariance matrix is P(k +l[k) g E{_(k + l[k)_T(k +l[k)},

where the estimation error is

_(jlk) A= x(j) - _(jlk). (29)

Using Eq. (15), Eq. (27) is rewritten as

Nij(k + 1)+ A¢ij(k + 1)= bTD[O(k + 1)- O(k),w(k + 1),&(k + 1),D(k)]si + ni3(k + 1)

(30)

Next, we linearize the nonlinear measurement equation (30) about the most recent estimate

at tk+l, i.e.,

x(k + 1) = 2(k + llk) + 5x(k + 1) --

O(k+ llk)]

_(k + 11_)I

_(k + llk)J

50(k + 1) ]
/

+ 5 (k+1)/
]5&(k + i)

(31)

where 50(k + 1), 5w(k + 1) and 5d_(k + 1) are the perturbations of the state components

about the nominal (i.e., predicted) state. Let D*(k]k) denote the a posteriori, orthogonalized

estimate of the attitude matrix at time tk, to be discussed in the next section. Using now

the most recent estimates for D(k) and x(k), namely £)*(klk ) and :_(klk), respectively, in
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Eq. (30), it follows that

A¢i3(k + 1)+ N,j(k + 1)= bTD[O(k +l[k) + 68(k + 1)- O(k[k),&(k +llk ) + 6w(k + 1),

_(k+l[k)+6d;(k+l),L)*(klk)]sz+ni_(k+l) (32)

As discussed in the sequel, the a posteriori IRP estimate is zeroed after each measurement

update (due to full reset control of the IRP state). We will, therefore, use the reset value of

the IRP estimate, 0C(k[k) = 0, in Eq. (32). Now expand D about the nominal state using a

first-order Taylor series expansion, i.e.,

D[O(k +llk) + _o(k + 1), a4k +llk) +_Sw(k + 1), b(k +llk) + _SCo(k+ 1),D*(klk)]

= D(k + Ilk) + £ OD[O(k + 1), &(k + llk),_(_:O0, + llk)'D*(klk)]l_(k+llk)5Oi(k + 1)
i----1

£ OD[O(k + llk),w(k + 1), _(k + llk),D'(klk)] I 5wi(k + 1)
+ 0Wi _(k+llk)

i=l

OD[O(k + lla),&(k + llk),_b(k + 1), D*(k k)] [o(k+ltk) _&'(k + 1) (33)+ &hi
i=l

I denotes 'evaluated at (' andwhere (e) ¢

D(k +llk ) g D[O(k + llk),&(k +llk), _,(k + llk),D*(klk)] (34)

Differentiating Eq. (14), the sensitivity matrices appearing in Eq. (33) are computed as

0

O0--_D[O(k + 1),g,(k + llk),_(k + llk),D'(klk)] = Gi[O(k + 1), _,(k + llk)]D'(klk ) (35a)

0

owO[O(k + llk),w(k + 1),_(k + l[k),[9"(klk)] = I_'F, [#(k + llk)]D'(klk ) (35b)

O--_O[O(k + llk),&(k + llk),cb(k + t),b*(klk)] = -_T2F,[O(k + llk)]D'(klk ) (35c)
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for i = 1, 2, 3, where

¢(k + llk) g &(k +llk) - T&(k + llk) (36)

and

1 T

a,(o, ¢) = _(Oe, 1 1 1 [e×]+ ei8 T) -eiI- (1 - g Ilell')[e,×] + gT(¢e, - e,¢ T) + SO,

Fi(a) = e,8 r - OeT

(37a)

(37b)

where ei is the unit vector on the ith axis, i = 1, 2, 3.

Using Eqs. (33), (35) and (37) in Eq. (32) yields

A¢o(k+l)+Ni_(k+l)-ffb(k+llk)s,=hT(k+l)Sz(k+l)+n,_(k+l ) (38)

where the observation vector hij(k + 1) E R 9 is defined as

[h,j(k + l) - hoT(k + l) h_T(k + l) hc_ijT(k + l) (39)

and the elements of the vectors heij(k + 1) e IRa, h,,,_j(k + 1) e R a and hc,,_j(k + 1) E R 3 are

ho,j,(k + 1) = b_Gp[O(k + llk), dz(k + llk)]D*(klk)s,,

h_,ijp(k + 1) = 1TbTFp[_(k + llk)]b'(klk)s,,
6

h_op(k + 1) = -Th,,,ijp(k + 1),

p= 1,2,3 (40a)

p= 1,2,3 (40b)

p = 1, 2, 3 (40c)

Define now the effective GPS measurement to be

v_(k + 1)_ zx¢,,(k+ 1)+ N,, - b_'b(k+ ilk)s, (41)
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Then, using this definition in Eq. (38) yields the following scalar measurementequation:

y_(k + 1) = h,7(k + 1)Sx(k + i) + n,j(k + 1) (42)

For the mb baselines and ms sightlines, there exist ms x rnb scalar measurements like Eq. (42).

We next aggregate all of these equations into a single vector equation, such that the mea-

surement associated with the baseline bj and sightline s_ corresponds to the pth component

of the vector measurement equation, where p = (j - 1)ms + i. This yields

y_(k + 1) = H4'(k + 1)6x(k + 1) + n4'(k + 1) (43)

where the pth row of the matrix H¢(k + 1) is h_jT(k + 1), the measurement noise satisfies

n4'(k ÷ 1),-_ N(0, RC(k _t- 1)) (44)

and the covariance R¢(k + 1) is a diagonal matrix who_e diagonal elements are

R (k + 1)= (45)

Vector Observation Aiding

If the sole source of attitude information is the GPS carrier phase signals, then Eq. (43)

should serve as the basis for the development of the m(asurement update algorithm (in the

next section). In the case that vector observations are available, this information structure

needs to be augmented.

Assume that a new pair of corresponding noisy vect )r measurements is acquired at tk+l.

This pair consists of the unit vectors u(k + 1) and v(k + 1), which represent the values of

the same vector r(k + 1), as modeled in the reference coordinate system and measured in
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the body coordinate system, respectively. The direction-cosinematrix D(k + 1) transforms

the true vector representation u0 into its corresponding true representation v0 according to

vo(k + I)= D(k + l)uo(k + i) (46)

Assuming no constraint on the measurement noise direction, the body-frame measured unit

vector, v(k + 1), is related to the true vector according to

vo(k + 1) + n_(k + I)

v(k + 1) = ilvo(k + I) + n_(k + 1)II
(47)

where the white sensor measurement noise is n_(k + 1) ,-, 3g(O,R_(k + 1)).

vo(k + 1) and v(k + 1) are unit vectors, it follows from Eq. (47) that

Since both

v(k+ 1) = vo(k + 1) + nv(k + 1) (48)

±k 1)"where n.(k + 1) =_ _P_o(k + 1)n_,(k + 1) and T_o ( + = I - v0(k + 1)v0T (k + 1) is the orthogonal

projector onto the orthogonal complement of span{v0(k + 1)}. To a good approximation,

the effective measurement noise is a zero mean, white Gaussian sequence with covariance

P (k+l) .L 2_ 1)=  .o(k + + 1)  o(k + (49)

To account for non-ideal effects (e.g., star catalog errors), it is assumed that the modeled

reference vector is related to the true vector according to

u(k + 1) = uo(k + I) + nu(k + 1) (50)

where n_ _L Uo is a zero mean, white Gaussian noise, that is uncorrelated with nv and has a

known covariance matrix R_(k).
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Vector Measurement Linearization

Using Eq. (15), Eq. (46) can be rewritten as

vo(k + 1)= D[O(k + 1)-O(k),w(k + 1),_(k + 1),D(k)]uo(k + 1) (51)

Lineaxizing about the predicted estimates and using Eqs. (31), (48) and (50), it follows that

v(k + 1)- n,,(k+ 1) = D[O(k+ llk) + 5a(k+ 1),_(k + llk) + 5w(k+ 1),

b(k + llk)+ _&(k+ 1),b*(klk)] [u(k+ 1)-n,,(k + 1)] (52)

where, as previously done in the GPS measurement linearization, the reset value of the IRP

estimate, OC(klk ) = 0, has been used. Expanding /:: about the nominal state using the

first-order Taylor series (33) yields

3

v(k + 1)- D(k + llk)u(k + 1)= _-_ [G, [O(k + 1]k), ¢(k + llk)]5Oi(k + 1)
i=l

+ 6TF,[O(k + 1]k)]Swi(k + 1)- _T2Fi[O(k + llk)]Sd_i(k + 1)]D*(k]k)u(k + 1)

- [?(k + l[k)n_,(k + 1) + n,,(k + 1)

= H"(k + 1)6x(k + 1) - D(k + llk)n,,(k + 1) + n,,(k + 1) (53)

where the observation matrix H"(k + 1) is written in l=lock matrix form as

H_'(k + l) = [Hl(k + l) H2(k + l) Ha(k + l)] (54)
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and the columnsof the submatrices H,(k + 1) E IR3'3, i = 1, 2, 3 are

H,j(k + 1)= Gj[O(k + ljk),_b(k + llk)]D°(klk)u(k + 1)

Y2j(k + 1)= _TF_I [0(k + llk)]D*(kIk)u(k + 1)

H3j(k + 1)= -TH2_(k + 1)

(55a)

(55b)

(55c)

for j = 1, 2, 3. Notice that the same sensitivity matrices are used here, as in the linearized

GPS measurement equation, which implies obvious computational saving. Define now the

effective measurement and measurement noise to be, respectively,

y_'(k + 1) _ v(k + 1) - D(k + l[k)u(k + 1)

n"(k + 1) _ n,_(k + 1) - D(k + llk)n,,(k + 1)

(56)

(57)

Then, using these definitions in Eq. (53) yields the following measurement equation:

y_'(k + 1) = H_'(k + 1)6x(k + 1) + n_'(k + 1) (58)

where n_(k + 1) ,-_ 2q(O,R_'(k + 1)) is the white measurement noise, and

R_'(k + 1) _/_,(k + 1) + D(k + l[k)P_(k + 1)DT(k +l[k) (59)

Measurement Update

To process the measurements, define now

y= , H" =

9 _,
(60)
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where n -,_ :N'(0, R) and R __adiag{R¢,R_,}. Since

5x(k + 1) = x(k + 1)- _(& 4- ll_) = _(k 4- l[k) (61)

and _(k +l[k) is an unbiased, MMSE predictor, we h_ve

E{_fx(k 4- 1)} = E{_(k 4- l[k)} =0 (62)

and

cov{Sx(k + 1)} = cov{_(k 4- llk)}= P(k +llk) (63)

thus

5x(k 4- 1) ,-,-,:N'(0, P(k 4 llk)) (64)

Using the linearized measurement equation and the sta_ istical properties of the measurement

and prediction errors, the MMSE estimator of 5x(k 4- 1) is

A

5x(k +l[k + 1) = K(k + 1)y(k + 1) (65)

where K(k 4- 1), the estimator gain matrix, is computed as

K(k + 1) = P(k + l[k)HT(k + 1) [H(k + 1)P(k + ]lk)HT(k + 1) + n(k + 1)]-' (66)
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Also, 5"_(k + Ilk + l) = J:(k + Ilk + 1) - 3:(k + Ilk) which, used in Eq. (65), yields the state

measurement update equation

._(k + llk+ 1) = ./:(k + llk) + K(k + 1)y(k + 1) (67)

Subtracting x(k + 1) from both sides of the last equation yields

_(k + 1]k + 1) = [I- K(k + 1)H(k + 1)] i:(k +llk ) - K(k + 1)n(k + 1) (68)

from which the resulting covariance update equation is

P(k +llk + 1)= [I- K(k + 1)H(k + 1)] P(k + 1]k)[I - K(k + 1)H(k + 1)] T

+ g(k + 1)R(k + 1)gT(k + 1) (69)

where the filtering error covariance is P(k +llk + 1) _ E{Sc(k +llk + 1)_T(k + llk + 1)}.

To compute the measurement-updated attitude matrix at time tk+l, we use the most

recent estimate _(k + llk+ 1) and the estimated attitude matrix corresponding to time tk

in Eq. (14). This yields

/)(k+ llk+ 1)= {I + A(k+ 1,k)+_,42(k+ 1,k)+_Aa(k+ 1,k)

+ _T[_(k+ 1,k)¢(k+Ilk+1)- ¢(k+ llk+ 1)A(k+ 1,k)]}[9*(klk) (70)

where the a posteriori estimates of A(k + 1, k) and qy(k + 1) are defined, respectively, as

A(H+ 1,k) =_-[t}(k +llk + 1)x]

@(k+ ilk + 1)-_-[_(k + ilk + 1)x]

(71)

(72)
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where

¢(k +llk + 1) __a&(k +llk + 1) - T_z(k + llk+ 1) (73)

and [9°(klk) is the a posteriori, orthogonalized estimate of the attitude matrix at time tk, to

be discussed in the next section.

Finally, since the a posteriori attitude matrix, /)(k + llk + 1), is computed based on

the a posteriori estimate, 0(k +llk + 1), this implies a full reset control [13, p. 332] of the

parameter vector, i.e.,

0c(k+ 1) = e(k + 1)- _(k-- ilk + 1) (74)

where OC(k + 1) is the reset state vector at tk+l, an¢. a corresponding reset of the state

estimate,

_C(k+ llk + 1) = 0 (75)

which is then used in the ensuing time propagation step. Since the reset control is applied

to both the state vector and its estimate, no changes are necessary in the estimation error

covariance matrix.

V Attitude Matrix Orthogonalization

To improve the algorithm's accuracy and enhance its stability, an additional orthogonaliza-

tion procedure is introduced into the estimator, following the measurement update stage. In

this procedure, the attitude matrix closest to the filtered attitude matrix is computed.

Given the filtered attitude matrix/9(k +llk + 1), the attitude matrix orthogonalization
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problem is to find the matrix

DER_,:,
(76a)

subject to

DTD _- I and det D = +1 (76b)

Being a special case of the orthogonal Procrustes problem, 14 the matrix orthogonalization

problem can be easily solved using the singular value decomposition (SVD). 15 Thus, if

D(k + llk+ 1) = U(k + 1)E(k + 1)Vr(k + 1) (77)

is the SVD of the matrix D(k +llk + 1) where U(k + 1) and V(k + 1) are the left and right

singular vector matrices, respectively, and E(k + 1) = diag{s_, s2, s3} is the singular value

matrix where sl _> s2 _> s3, then

b*(k+llk+l)=U(k+l)diag{1,1, detU(k+l)detV(k+l)}VT(k+l) (78)

In real-time attitude determination and control the excessive computational burden as-

sociated with the SVD might render its use prohibitive. In such cases, the following ap-

proximate orthogonalization method, consisting of a single-step application of the iterative

method introduced in Ref. 16, can be utilized:

b'(k +lik + 1)= N(k + 1).b(k +llk + 1) (79)
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where

N(k + 1) " 3= _z- b(_ + llk + l_b_(k + ilk + 1) (80)

Remark 1. Using an approach similar to that used in Ref. 17, it can be shown that, to

first-order, the orthogonalization procedure does not "affect the statistical properties of the

estimator and, therefore, does not necessitate any adjustments in the algorithm.

VI Prediction

In the prediction step at tk, the reset a posteriori estimate at time tk, _C(k[k) (computed

with the reset IRP estimate) and its corresponding error covariance matrix, P(k[k), are

propagated to time tk+l.

Using Eq. (21), we have

_(k + l[k)= ¢(T)_f(_[k) (81)

Using this result with Eq. (21) yields the covariance propagation equation

P(k + l[k) = _(T)P(k[k)¢T(T) 4- r(T)Q(k)rr(T) (82)

To propagate the attitude matrix to tk+l we use the most recent IRP, attitude-rate and

angular acceleration estimates, and the orthogonalized DCM estimate corresponding to tk,

in Eq. (14). This yields

I + A(k + 1, k)+ 1A.2(k + 1, k)+ _ fi.a(k + 1, k)

+ _T[.4(k + 1, k)_(k + l[k)- _(k+ ilk)fil(k + 1, k)]}D*(klk) (83)
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wherethe a priori estimates of A(k + 1, k) and _(k + 1) are defined, respectively, as

A(k + 1, k) _ -[0(k + ilk)x]

_(k + l[k) _ -[¢(k + llk)x]

(84)

(85)

VII Numerical Study

Two numerical examples axe presented in this section, to demonstrate the performance of

the new estimator, and illustrate the performance enhancement achieved by using aiding

vector observations.

Example I

In this example, three non-orthogonal baselines were used: bl = [1.0, 1.0, 0.0] T, b_ =

[0.0, 1.0, 0.0] T, b3 = [0.0, 0.0, 1.0]T. - Two fixed sightlines were observed at all times,

Sl-- _[1.0, 1.0, 1.0] T and s2-- :_2 [0.0, 1.0, 1.0] T. The non-normalized GPS signal noise

standard deviation was 5.0 mm. When vector measurements were used, the noise equivalent

angle of the inertially-referenced observations was set to 5.0 arc-s, while the-body-referenced

vector measurements were simulated to be acquired by a low accuracy attitude sensor with a

noise equivalent angle of 0.1 deg. These measurements corresponded to a randomly selected

vector, which was kept constant throughout the run.

The angular rates of the satellite satisfied coi(t) = Ai sin(_t + ¢i), where the amplitudes

A, are 0.02, 0.05 and 0.03 deg/s, the phases ¢, axe _r/4, rr/2 and art/4 rad, and the periods

Ti are 85, 45 and 65 s for i = 1, 2, 3, respectively. The initial angular rate estimates were

all set to zero. The true initial attitude corresponded to Euler angles of 30 deg, 20 deg and

10 deg in roll, pitch and yaw, respectively, while the filter's initial state corresponded to

Euler angles of 25 deg, 15 deg and 5 deg, respectively. The filter was run at a rate of 20 Hz,
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and the measurementprocessingrate was10Hz. The Singerangular accelerationmodel was

usedwith parametersset to r = 10 s, &M = 10 -4 rad/s 2, PM = Po = .001 for all three axes.

In Fig. 2, the three true Euler angles are shown for a typical run. These angles were

computed from the true attitude matrix assuming a 3-2-1 angle sequence. The Euler angle
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Fig. 2: Example I: True Euler angles.

estimation errors, computed from the estimated attitud( _matrix assuming a 3-2-1 Euler angle

sequence, are shown in Fig. 3. Fig. 4 presents the angular rates estimation errors for the

same run, with and without vector measurement aiding. The mean and standard deviation

of the estimation errors are summarized in Table 1, which demonstrates the effect of the
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Table 1: Example I: The effect of vector observation aiding on estimation per-
formance.

GPS only Vector observation aiding

Roll angle (deg)

Pitch angle (deg)

Yaw angle (deg)

Wl (deg/s)

w2 (deg/s)

w3 (deg/s)

Standard Standard

Mean deviation Mean deviation

-9.2x 10 .4 5.8x 10 .2 -4.2x 10 -a 3.9x 10 .2

3.0x 10 .3 8.1x 10 .2 -1.4x 10 .3 2.2x 10 .2

7.1 x 10 .3 9.5 x 10 .2 9.9 x 10 .4 2.2 x 10 .2

-5.8x 10 .4 9.5x 10 .3 5.1x10 .5 8.2x 10 .3

2.0 x 10 .4 2.7 x 10 .2 -2.8 x 10 .4 1.2 x 10 .2

4.0 x 10 .5 1.5 x 10 .2 3.9 x 10 .4 6.5 x 10 .3

vector observation aiding in reducing the estimation errors standard deviation.

Example II

In this example, the same parameters were used as in Example I, except for the follow-

ing. The three baselines used were now bl = [0.1, 1.0, 0.1] T, b2 = [0.0, 1.0, 0.0] T, ba =

[0.0, 0.0, 1.0] T. As can be observed, the first two baselines are almost colinear. The angular

velocity of the satellite was _o = [0,236, 0] T deg/hr, which is typical for an Earth-pointing,

low Earth orbit satellite, with pitch rate of one revolution per orbit. The Singer angular

acceleration model parameters were set to r = 10 s, d_M = 10 -5 rad/s 2, PM = P0 ---- .001 for

all three axes. As in the first example, vector measurements, when available, corresponded

to a randomly selected vector, which was kept constant throughout the run.

In Fig. 5, the three true Euler angles are shown for a typical run. Fig. 6 shows the Euler

angle estimation errors (the estimated angles were computed from the estimated attitude

matrix assuming a 3-2-1 Euler angle sequence). Fig. 7 presents the angular rates estimation

errors for the same run, with and without vector measurement aiding. The estimation error

statistics are presented in Table 2. As can be observed, especially from Fig. 6 and Table 2,

the robustifying effect of aiding the GPS measurements with vector observations is very
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Table 2: Example II: The effect of vector observation aiding on estimation per-

formance.

GPS only Vector observation aiding

Roll angle (deg)

Pitch angle (deg)

Yaw angle (deg)

wl (deg/s)

w2 (deg/s)

w3 (deg/s)

Standard Standard

Mean deviation Mean deviation

7.2 x 10 -3 6.4 x 10 -2 1.3 x 10 -3 2.0 x 10 -2

1.1x 10 -3 3.8x 10 -2 -4.8x 10 -4 2.0x 10 -2

7.7 x 10 -3 8.7 x 10 -2 4.6 x 10 -3 2.2 x 10 -2

-9.6x10 -6 4.8x 10 -4 2.5x10 -6 3.3x10 -4

2.8 x 10 -s 9.9 x 10 -4 3.7 x 10 -5 5.1 x 10 -4

3.4x10 -6 9.3x10 -4 -5.8x10 -6 3.5x10 -4

significant in this ill-conditioned case.

VIII Conclusions

A nonlinear sequential estimator has been presented, that uses differential GPS carrier phase

measurements to estimate both the attitude matrix and the angular velocity of a spacecraft.

The algorithm is based on the IRP third-order minimal parametrization of the attitude

matrix, which is at the heart of its computational efficiency. Avoiding the use of the typically

uncertain (and frequently unknown) spacecraft dynamic model, the filter uses a polynomial

state space model, in which the spacecraft angular acceleration is modeled as an exponentially

autocorrelated stochastic process. When vector observations are available (e.g., from low

accuracy Sun sensors or magnetometers), the estimator's structure can be easily modified

to exploit this additional information and, thereby, significantly enhance the algorithm's

robustness and accuracy. Numerical examples have been presented, that demonstrate the

performance of the proposed algorithm and the advantages of aiding the GPS carrier phase

signals with vector observations, even when the vector measurements are of relatively low

accuracy.
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